skip to main content


Search for: All records

Creators/Authors contains: "Renaud, Florent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The formation and evolution of galaxies have proved sensitive to the inclusion of stellar feedback, which is therefore crucial to any successful galaxy model. We present INFERNO, a new model for hydrodynamic simulations of galaxies, which incorporates resolved stellar objects with star-by-star calculations of when and where the injection of enriched material, momentum, and energy takes place. INFERNO treats early stellar kinematics to include phenomena such as walkaway and runaway stars. We employ this innovative model on simulations of a dwarf galaxy and demonstrate that our physically motivated stellar feedback model can drive vigorous galactic winds. This is quantified by mass and metal loading factors in the range of 10–100, and an energy loading factor close to unity. Outflows are established close to the disc, are highly multiphase, spanning almost 8 orders of magnitude in temperature, and with a clear dichotomy between mass ejected in cold, slow-moving (T ≲ 5 × 104 K, v < 100 km s−1) gas and energy ejected in hot, fast-moving (T > 106 K, v > 100 km s−1) gas. In contrast to massive disc galaxies, we find a surprisingly weak impact of the early stellar kinematics, with runaway stars having little to no effect on our results, despite exploding in diffuse gas outside the dense star-forming gas, as well as outside the galactic disc entirely. We demonstrate that this weak impact in dwarf galaxies stems from a combination of strong feedback and a porous interstellar medium, which obscure any unique signatures that runaway stars provide.

     
    more » « less
  2. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

     
    more » « less
  3. Abstract

    We present a high-resolution view of bubbles within the Phantom Galaxy (NGC 628), a nearby (∼10 Mpc), star-forming (∼2Myr−1), face-on (i∼ 9°) grand-design spiral galaxy. With new data obtained as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS)-JWST treasury program, we perform a detailed case study of two regions of interest, one of which contains the largest and most prominent bubble in the galaxy (the Phantom Void, over 1 kpc in diameter), and the other being a smaller region that may be the precursor to such a large bubble (the Precursor Phantom Void). When comparing to matched-resolution Hαobservations from the Hubble Space Telescope, we see that the ionized gas is brightest in the shells of both bubbles, and is coincident with the youngest (∼1 Myr) and most massive (∼105M) stellar associations. We also find an older generation (∼20 Myr) of stellar associations is present within the bubble of the Phantom Void. From our kinematic analysis of the HI, H2(CO), and Hiigas across the Phantom Void, we infer a high expansion speed of around 15 to 50 km s−1. The large size and high expansion speed of the Phantom Void suggest that the driving mechanism is sustained stellar feedback due to multiple mechanisms, where early feedback first cleared a bubble (as we observe now in the Precursor Phantom Void), and since then supernovae have been exploding within the cavity and have accelerated the shell. Finally, comparison to simulations shows a striking resemblance to our JWST observations, and suggests that such large-scale, stellar-feedback-driven bubbles should be common within other galaxies.

     
    more » « less